
automaTA: Human-Machine Interaction for Answering
Context-Specific Questions

Changyoon Lee*, Donghoon Han*, Hyoungwook Jin*, Alice Oh
KAIST, Daejeon, South Korea

{cyoon47, hoonhan.d, jinhw}@kaist.ac.kr, alice.oh@kaist.edu

ABSTRACT
When online learners have questions that are related to a spe-
cific task, they often use Q&A boards instead of web search
because they are looking for context-specific answers. While
lecturers, teaching assistants, and other learners can provide
context-specific answers on the Q&A boards, there is often a
high response latency which can impede their learning. We
present automaTA, a prototype that suggests context-specific
answers to online learners’ questions by capturing the context
of the questions. Our solution is to automate the response
generation with a human-machine mixed approach, where hu-
mans generate high-quality answers, and the human-generated
responses are used to train an automated algorithm to pro-
vide context-specific answers. automaTA adopts this approach
as a prototype in which it generates automated answers for
function-related questions in an online programming course.
We conduct two user studies with undergraduate and graduate
students with little or no experience with Python and found the
potential that automaTA can automatically provide answers to
context-specific questions without a human instructor, at scale.

Author Keywords
Context-specific learning; question answering; programming
learning; human-machine interaction

INTRODUCTION
In online learning where learners have little real-time feedback
and direct interaction with the instructors, getting an answer
for a question quickly to deal with issues they face is essen-
tial for the learners [3]. Thus, searching and finding answers
online for immediate clarification can improve the learning ex-
perience. However, when the learners’ questions are not about
a general concept or knowledge but rather about a specific
course task or homework, it is likely that only a few people
have asked the same questions before. In other words, the an-
swers they can find through a web search may not be relevant

* Authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S’19, June 24–25, 2019, Chicago, IL, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. . . $15.00

DOI: http://dx.doi.org/10.475/123_4

to their questions. In such cases, learners post the questions
in the course’s question board to receive an answer from the
teaching assistant or the instructor. The learners can then get
the correct and relevant answers specific to the context, but the
high response latency of the instructors can impede learning.

To deal with context-specific questions arising from online ed-
ucation settings quickly and accurately to help online learners,
we suggest a human-machine mixed approach that collects
question-answer data for each course and automatically sug-
gests appropriate answers to the learners’ questions, inspired
by Zensors [5]. This approach makes automation possible
through machine learning with data created by human work-
ers. When there is a context change and the machine is unable
to answer, the suggested approach gives the control back to
the human to maintain high accuracy and relevance of the
answers while simultaneously training the machine for the
new context. We believe that this approach can deal with
unanswered, course-specific questions, and train the machine
learning model to generate automated answers.

To explore the potential of this approach, we conduct two
user studies with automaTA, a prototype that suggests context-
specific answers to learners’ questions in programming by
capturing the context of their questions.

The first study aims to evaluate the usability and functionality,
and automaTA received an average satisfaction score of 4.0 (1:
Not satisfied, 5: Satisfied). The second study aims to collect
question-answer data and train automaTA without any initial
data, and evaluates the trained system’s usefulness and learn-
ers’ satisfaction. Participants reported 10 automated answers
to be useful and gave a mean score of 4.0 for their satisfaction
with the answers (1: Not satisfied, 5: Satisfied).

Our contributions are as follows:

• We show the potential of the human-machine mixed ap-
proach for context-specific question answering in an online
course, applicable at scale.

• We present a prototype of automaTA, a system which sug-
gests automated answers by training a machine learning
model using context-specific answers from human teaching
assistants.

http://dx.doi.org/10.475/123_4

BACKGROUND

Answering Context-Specific Questions
Learners often bring context-specific questions to their instruc-
tors. For example, in programming, Jonathan Sillito et al. [6]
has shown that many questions need to be provided with their
context to get adequately answered. To deal with such ques-
tions, instructors first need to figure out the context of the
question or infer if it is not explicitly given. Imitating human
instructors, we propose the idea of inferring the context of
learners’ questions first and providing answers by utilizing the
questions’ context such as code history.

Human-Machine Interaction
Traditional machine learning approaches usually do not per-
form well without sufficient data. Instead, users’ active par-
ticipation in human-machine mixed approaches can improve
machine learning-based systems [1], as it reduces the effort
of collecting qualified data to train a model. For example,
Zensors by Gierad Laput et al. [5] suggests a human-machine
mixed workflow that allows for the construction of an auto-
mated system which can handle new or unexpected situations.
By turn-taking between human workers and machines, high ac-
curacy can be maintained throughout the training process. We
adopted the approach from Zensors by allowing learners to ask
human teaching assistants directly when automated answers by
the system are not satisfactory. Teaching assistants’ answers
are then used to train the machine so that the system improves
over time to provide better suggestions automatically.

SYSTEM
We implemented a prototype, automaTA, to evaluate the feasi-
bility of a human-machine mixed approach to automate ques-
tion answering in the context of programming learning. au-
tomaTA is a Google Chrome extension that allows students to
ask questions and receive automated answers on their program-
ming task window. automaTA adds to the rich features built
in Elice, an online Python learning platform [4]. automaTA
provides three key functions to support the time-effective and
satisfactory question-answering process of self-studying learn-
ers.

Inferring the Context of Questions
automaTA has a search bar in which learners can enter free-
form questions (Figure 1(a)). When a learner wants to find a
function that performs a particular action (e.g., open and read a
file), the learner describes the action as far as s/he can and asks
on the search bar. Then, automaTA suggests three functions
that are most relevant to the question and the programming
task the learner is solving. The question does not need to
be a complete sentence as automaTA extracts and evaluates
keywords from the question. automaTA can also handle sloppy
questions, from which learner’s intention and context are hard
to be inferred, by checking what functions the learner’s code
lacks, compared to peer codes. For example, suppose a learner
asks “how could I get data from a txt?”. Although the read()
function would be the most appropriate answer, the words
used in the question are not directly relevant to the function.
automaTA checks and lists the functions used in the learner’s
current code. If the learner has not used read() while other

Figure 1. (a) Learners ask for function suggestions by describing the
function they are looking for. (b) automaTA suggests three relevant func-
tions for the description. Learners can click the ‘Useful’ buttons if the
suggestion is correct and helpful. (c) Code examples from the official
Python documentation and peer code are provided. (d) Learners can
ask questions directly to teaching assistants if the automated answers
are unsatisfactory.

Figure 2. Learners can ask questions directly to teaching assistants. The
answers to the questions may not be provided immediately as teaching
assistants answer them manually. Questions are stacked from the bot-
tom so that the learners can check and see their previous questions.

previous learners frequently use it in their codes, automaTA
suggests using read().

Training Model for Question Answering
Learners can click the ‘Useful’ button to indicate the useful-
ness of a particular function suggestion. Clicking this button
updates the rank of the function for an input question from a
user so that it is more likely to appear for similar questions
in the future. The concept of matching users’ high-level de-
scriptions to specific functions has been introduced in previous
research. The query-feature graph maps a search query de-
scribing the user’s goal to specific features in a system [2].
In automaTA, we adopted this approach and constructed a
context-function graph to generate automated answers for pro-
gramming beginners’ sloppy questions. Our context-function
graph captures question context by evaluating the learner’s
question, code, and peer code. The graph maps learners’ con-
text to a finite set of functions used in programming. The ‘Use-
ful’ button clicks and teaching assistants’ question-answering
change the mappings dynamically by strengthening associated
mappings. With question keywords, code, and peer code infor-
mation, our context-function graph computes relevance scores
for every function and returns the top three relevant functions.

Providing Satisfactory Answers
automaTA provides satisfactory answers by turn-taking be-
tween humans and machines. In the case when the automated
answers by automaTA are not relevant for a question, learners
can ask the same question directly to a human teaching assis-
tant (Figure 2). This workflow ensures that learners can get
satisfactory help even when automaTA is not mature enough
to give useful answers. When a learner asks a question to
a teaching assistant, learner’s code and task information are
sent to the assistant along with the question. The teaching
assistant uses an independent interface to answer the ques-
tion. The teaching assistant suggests a list of functions and
writes an explanation of how those functions can help solve
the learner’s task. Question and answer data are then used to
improve automaTA to give better answers.

EVALUATION

User Study 1
To evaluate the usability and functionality of automaTA, we
conducted a user study with five participants. We evaluated
the user satisfaction of our system compared to that of online
search.

Participants
Participants were undergraduate students who have either only
taken introductory Python programming courses or have not
taken any. None of the participants major in computer science.
At the beginning of the study, the participants were given a
short tutorial on Python programming and basic function us-
ages to simulate the usual programming practice environment.

Study Design
The study was a 2-by-2 within-subject study. The participants
were assigned to four conditions of different task order and
system usage between web search and automaTA. We treated
usage order as an independent variable to compensate for the

learning effect between the information search tools. We gave
our participants two programming tasks—one which uses the
cs1robots library, a customized library used in our university’s
introductory programming course, and another which uses
Python built-in functions. The tasks were independent as they
do not share functions or algorithms to complete. Participants
completed a questionnaire at the end to rate system usability
and satisfaction.

Data Collection
We conducted a study beforehand to collect question-answer
data. We recruited six programming beginners on campus. We
received 33 function-related questions and trained the query-
feature graph with these questions. Since the size of the data
collected is too small and may not represent the actual dis-
tribution of questions and keywords, two authors who have
participated as teaching assistants in the introductory program-
ming course added more question-answer data based on their
experience.

Result
Participants rated the usefulness of automaTA’s function ex-
planation and code examples as 3.6 and 3.0, respectively (1:
Not useful, 5: Useful). For the question “how far do you agree
that automaTA helps completing tasks more than online search
does?”, participants rated 3.0 on average (1: Strongly disagree,
5: Strongly agree). The participants’ average satisfaction of
the system was 4.0 (1: Not satisfied, 5: Satisfied) and three
out of five participants answered that they are likely to reuse
the system for their learning. One participant commented
that, “Once I get well-acquainted with the system, the function
suggestion will help a lot.”

User Study 2
Since the first study showed the potential that automaTA can
give satisfactory answers when trained with enough question-
answer data, we ran another study with nine programming
beginners to check if data collection can be achieved with
our human-machine mixed approach. The first phase of the
study aimed to collect question-answer data to train the system
with no data, and the second phase of the study aimed to
evaluate the quality of answers that are suggested from the
data collected in the first phase.

Participants
We recruited undergraduate and graduate students with little
to no experience of using the Python programming language.
The self-reported score for level of understanding on Python
was 1.6 on average (1: Low, 5: High). None of the participants
majored in computer science, and six participants out of nine
have never taken a Python programming course before.

Study Design
At the beginning of the study, we gave a short tutorial on
Python programming and basic NumPy library usage. Then,
they were asked to complete five programming tasks within an
hour. The programming tasks given to the participants were
chosen to be easy to develop an algorithm but challenging
to translate the algorithm into a program. These tasks were
chosen because we expected the participants to ask questions

related to function usage which automaTA aims to answer au-
tomatically. During the tasks, participants were not allowed to
perform online searches or refer to external materials, but they
were encouraged to use automaTA to ask questions to simulate
a context-specific situation where no answer can be found
online. We intentionally removed example codes from the
system in order to train it with a more diverse question-answer
dataset, including function usage questions. Participants com-
pleted a questionnaire at the end of each phase to rate system
usability and satisfaction.

Phase 1. Three participants were assigned to this phase. Since
automaTA did not have any data to start with, participants
could not receive automated answers. We received all the
questions to answer manually and to train automaTA with the
question-answer data. 15 questions were asked and answered,
and all question-answer data were used to train the query-
feature graph of our system.

Phase 2. Six participants were assigned to this phase. Since
we trained the system with question-answer data from the
first phase, the participants in the second phase could receive
automated answers. Participants could still ask questions to
the human TAs through the system when automated answers
were not satisfactory or whenever they desired to.

Result
A total of 10 automatically suggested functions were reported
to be useful by the participants. A total of 35 questions were
asked to the human TAs to answer manually. Participants gave
a mean score of 4.0 for their satisfaction with the answers
(1: Not satisfied, 5: Satisfied) and commented that the an-
swers were appropriate and immediate. Participants reported a
mean score of 3.7 on whether they would be willing to use au-
tomaTA again when they learn programming (1: Not willing,
5: Willing).

DISCUSSION
Two studies showed the potential of applying human-machine
mixed approach to train and automate a question answering
system in an online course. In the first study, the system
was able to provide satisfactory answers specific to different
tasks. In the second study, the system was able to provide
10 useful suggestions even when there was no relevant data
available initially, after being trained with the questions from
3 participants in the first phase of the study.

Limitation and Future Work
However, the current system has some limitations at the mo-
ment. Firstly, while our current suggestion algorithm could
provide satisfactory answers to the participants, a more so-
phisticated algorithm for training query-feature graph and for
suggesting answers can improve the accuracy of the system.
We are planning to deploy our system at scale to evaluate
and train our system. Secondly, we suspect some usability
concerns in the system that can lead to inaccurate data col-
lection. Whenever the learner finds a good suggestion from
the system, the system only receives the information when the
learner clicks on the ‘Useful’ button. However, it is possible
that the learner does not click the button. This phenomenon
will cause under-training of the system. A more user-friendly

and accurate method to capture the system’s successful sug-
gestions should be devised. Lastly, we only tested the system
and the human-machine mixed approach in the domain of
programming learning. Exploration of the approach in other
educational domain should be done.

ACKNOWLEDGEMENT
This research was supported by the Engineering Research
Center Program through the National Research Foundation of
Korea (NRF) funded by the Korean Government MSIT (NRF-
2018R1A5A1059921) and by the MSIT (Ministry of Science,
ICT & Future Planning), Korea, under the National Program
for Excellence in SW (2016-0-00018), supervised by the IITP
(Institute of Information & communications Technology Plan-
ning & Evaluation) (2016-0-00018).

REFERENCES
1. Saleema Amershi, Maya Cakmak, William Bradley Knox,

and Todd Kulesza. 2014. Power to the people: The role of
humans in interactive machine learning. AI Magazine 35,
4 (2014), 105–120.

2. Adam Fourney, Richard Mann, and Michael Terry. 2011.
Query-feature graphs: bridging user vocabulary and
system functionality. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology. ACM, 207–216.

3. Kyong-Jee Kim, Shijuan Liu, and Curtis J Bonk. 2005.
Online MBA students’ perceptions of online learning:
Benefits, challenges, and suggestions. The Internet and
Higher Education 8, 4 (2005), 335–344.

4. Suin Kim, Jae Won Kim, Jungkook Park, and Alice Oh.
2016. Elice: an online CS education platform to
understand how students learn programming. In
Proceedings of the Third (2016) ACM Conference on
Learning@ Scale. ACM, 225–228.

5. Gierad Laput, Walter S Lasecki, Jason Wiese, Robert
Xiao, Jeffrey P Bigham, and Chris Harrison. 2015.
Zensors: Adaptive, rapidly deployable, human-intelligent
sensor feeds. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.
ACM, 1935–1944.

6. Jonathan Sillito, Gail C Murphy, and Kris De Volder.
2008. Asking and answering questions during a
programming change task. IEEE Transactions on
Software Engineering 34, 4 (2008), 434–451.

	Introduction
	Background
	Answering Context-Specific Questions
	Human-Machine Interaction

	System
	Inferring the Context of Questions
	Training Model for Question Answering
	Providing Satisfactory Answers

	Evaluation
	User Study 1
	User Study 2

	Discussion
	Acknowledgement
	References

